
411

0022-4715/03/1100-0411/0 © 2003 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 113, Nos. 3/4, November 2003 (© 2003)

Multifractal Spectra of Fragmentation Processes

Julien Berestycki1

1 Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie et
C.N.R.S. UMR 7599, Paris, France; e-mail: jberest@ccr.jussieu.fr

Received November 23, 2002; accepted May 7, 2003

Let (S(t), t \ 0) be a homogeneous fragmentation of ]0, 1[ with no loss of
mass. For x ¥ ]0, 1[, we say that the fragmentation speed of x is v if and only if,
as time passes, the size of the fragment that contains x decays exponentially
with rate v. We show that there is vtyp > 0 such that almost every point
x ¥ ]0, 1[ has speed vtyp. Nonetheless, for v in a certain range, the random set Gv
of points of speed v, is dense in ]0, 1[, and we compute explicitly the spectrum
vQ Dim(Gv) where Dim is the Hausdorff dimension.
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1. INTRODUCTION

Fragmentation underlies a number of physical, chemical and geological
processes, such as polymer degradation, (1, 2) liquid droplet breakup, (3)

crushing or grinding of rocks, (4) atomic collisions and nuclear multifrag-
mentation, (5) or energy cascade in turbulence to name just a few. One can
also report to the proceedings (6) for some applications in physics and to
refs. 7, 8, and 9 for computer science. The fragmented quantity in such
processes are diverse: mass, momentum, energy, or surface. But a global
characteristic feature is that each new fragment continues splitting inde-
pendently. Usually the simplifying assumption that each fragment can be
described by a single state variable (e.g., mass) is also made.

Informally, the purpose of this work is to investigate the set of
locations having an abnormally fast (or slow) fragmentation speed in a
so-called homogenous fragmentation of a one dimensional object.



1.1. An Example

Let us first introduce via a simple example the ideas and notions
on which this paper focuses. A fragmentation model describes an object
endowed with a unit mass measure that falls apart as time runs. We con-
sider the following example which is a continuous version of a model due
to Kolmogoroff in what seems to be one of the first probabilistic work on
random fragmentations (see ref. 10). Define S(t) to be a Markov process
with values in the space O of the open subsets of ]0, 1[, which starts from
S(0)=]0, 1[ and evolves as follows. Each segment of length m is cut in
two with rate 1 (i.e., after an exponential time with mean 1). It then gives
rise to two new segments (which are thus included in their ‘‘father’’) of
respective length Vm and (1−V) m, where V is a random variable with
values in ]0, 1[ independent of the past. The new segments follow the same
dynamics independently. The process S(t) is called a homogeneous interval
fragmentation.

For a given point x ¥ ]0, 1[ and a realization of an interval fragmen-
tation we will say that x has fragmentation speed or rate of decrease v if

− log(|Ix(t)|)/tQ v

where |Ix(t)| is the size of the fragment that contains x at time t. Pick
u ¥ ]0, 1[ at random from the uniform distribution, then it is plain from
our construction that |Iu(t)| is a pure jump process, and that the waiting
times between each jump are exponential with parameter 1. Clearly
t(t)=−log(|Iu(t)|) is a compound Poisson process whose increment is
given by the random variable − log(Z) where conditionally on V, Z is V
with probability V and is 1−V with probability 1−V. Thus, if we define
vtyp :=E(−log(Z)), then almost surely

−
1
t

log |Iu(t)|Q vtyp as tQ..

Hence almost every points in ]0, 1[, in the sense of the Lebesgue measure,
has rate of decrease vtyp, which is thus the typical rate of decrease.

On the other hand, we can define the process J(t) of ‘‘the largest
fragment followed’’ inductively by following the largest fragment at each
dislocation. Again − log(J(t))/t is a compound Poisson process and the
SLLN entails the almost sure convergence of − log(J(t))/tQ vŒ where
clearly vŒ < vtyp. So there must be some points whose fragmentation speed is
less than vtyp. The same technique also allows us to find some fast points of
fragmentation by selecting the smallest fragment at each dislocation.
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If we give ourselves an interval ]a, b[ in ]0, 1[, then almost surely
there exists a time t such that one of the interval components of S(t) is
included in ]a, b[. As new segments evolve independently and with the
same dynamics as the original fragment, the same analysis applies and
]a, b[ contains almost surely a point with fragmentation speed vŒ. This
shows that if there exists almost surely a point whose fragmentation speed
is v > 0, then there is a dense subset of ]0, 1[ of points having the same
property.

Although the example above is good for intuition, it has two limits.
First one can suppose that when a segment splits, it might give birth to any
number of sub-segments, possibly infinite, and not just two. Second, in this
example, the splitting times are ‘‘discrete,’’ the first time of splitting is
almost surely strictly positive. In the sequel we consider more generally the
case where fragmentation may occur continuously.

The aim of this paper is to show that, for a large class of homogeneous
fragmentations, there are some points with a different fragmentation speed
than the typical one and to study the sets of such points. This problem
resembles by some aspects the study of the fast points of the Brownian
motion of Orey and Taylor (11) (see also Davis, (12) Kahane, (13) and Perkins (14)

for more insight on fast and slow points of the Brownian motion) or the
recent works of Dembo et al. on thin and thick points of planar and
d-dimensional Brownian motion (see refs. 15–17). There are also some
natural and obvious connections with the theory of branching processes
that stem from the fact that there is a genealogic structure in the interval
fragmentations. Some of the techniques we use are close to those used by
Shieh and Taylor, (18) Shieh and Mörters, (19) and Liu (20) for studying the
multifractal spectra of the branching measure. This connection was already
used in the analysis of self-similar recursive fractal, see Hambly and
Jones (21) and the references therein. Although we do not make use of it
here, there seems to be a way of doing some of the proofs using ideas of
percolation on a tree (see refs. 22 and 23 or the book in preparation (24)).

We now introduce informally some notions related to fragmentations
(definitions being given in Section 2) and state our main results.

1.2. Main Results

A homogeneous interval fragmentation S(t) can be heuristically
described as a nested family of open subsets of ]0, 1[ (i.e., S(t) ı S(s)
whenever t \ s) such that when a new fragment appears, it starts a new
independent fragmentation which, up to the scale factor, has the same law
as the initial one.
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Define

S a :=3x=(x1, x2,...), x1 \ x2 \ · · · \ 0, C
i
xi [ 14 .

Denote by L the map OQS a that associates to an open subset of ]0, 1[
the ordered vector of the lengths of its interval decomposition. Then if S(t)
is an interval fragmentation, we denote by X(t)=L(S(t)) the associated
ranked fragmentation.2 The configuration space for ranked fragmentations

2 Conversely, it is known that given X(t) there exists S(t) such that X(t)=L L(S(t)) in the
sense of identity of the finite dimensional marginals.

is S a.
We suppose that at all times the Lebesgue measure of S(t) is 1 (i.e.,

there is no loss of mass), thus the associated ranked fragmentation
X(t)=L(S(t)) takes its values in the smaller space

S a
1 :=3x=(x1, x2,...), x1 \ x2 \ · · · \ 0, C

i
xi=14 .

Bertoin has shown in ref. 25 that the law of the process X(t) is com-
pletely characterized by the so-called splitting measure n(.) which is a
measure on S a

1 such that

F
S

a
1

(1−x1) n(dx) <.. (1)

Roughly, the splitting measure describes the ‘‘rates’’ at which fragments
split. Heuristically, if A …S a, then, for any r ¥ ]0, 1[, n(A) is the rate at
which a fragment of size r splits into smaller masses (x1, x2,...) such that
(x1/r, x2/r,....) ¥ A.

Some information about n is caught by the function F:

F(q) :=F
S

a
1

11− C
.

i=1
xq+1i
2 n(dx), q > p

¯
, (2)

where

p
¯
:=inf 3 p ¥ R : F

S
a
1

C
.

i=2
xp+1i n(dx) <.4 .

From now on, we always suppose p
¯
< 0.
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As in ref. 26, define two constants

vtyp :=FŒ(0+)=−F
S

a
1

1 C
.

i=1
xi log(xi)2 n(dx)

which, as we shall see, is the typical rate of decrease, i.e., it is a.s. the
fragmentation speed of a point picked at random in ]0, 1[ from the
uniform distribution, and vmin as follows. Let p̄ > 0 be the unique solution
of the equation

(p+1) FŒ(p)=F(p), p > p
¯
.

The function pQ F(p)/(p+1) reaches its unique maximum vmin on ]p
¯
,.[

at p̄ and

vmin :=FŒ(p̄)=F(p̄)/(p̄+1).

It is shown in ref. 26 that vmin is the rate of exponential decrease of the
largest fragment, i.e., almost surely

lim
tQ.
−t−1 log X1(t)=vmin.

So clearly vmin [ vtyp. However this does not mean that there exists some
point with rate vmin: for that we would need the existence of a point which
is often enough in the largest fragment, and such a point might well not
exist. Define also

vmax :=FŒ(p
¯
+) ¥ [0,.].

Let Gv be the set of points with fragmentation speed v

Gv :={x ¥ ]0, 1[ : lim
tQ.
−t−1 log(|Ix(t)|)=v}.

Also define Gav and G
a v

as follows:

Gav :={x ¥ ]0, 1[ : lim sup
tQ.

−t−1 log(|Ix(t)|) [ v},

G
a v
:={x ¥ ]0, 1[ : lim inf

tQ.
−t−1 log(|Ix(t)|) \ v}.

Thus a point in G
a v

(resp. in Gav) will be, for t large enough, in a small (resp.
large) fragment compared to e−vt.
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Let Uv be the reciprocal of v by FŒ, i.e., FŒ(Uv)=v. Define

C(v) :=(Uv+1) v−F(Uv) (3)

for v ¥ ]vmin, vmax[ and C(v)=−. elsewhere. As C̃(v)=C(v)−v is thus the
Legendre transform L of F, one has

LC̃(.)=LLF(.)=F(.).

Thus F and C determine each other uniquely.
A fragmentation such that each splitting produces two fragments (i.e.,

n only charges the subspace {x ¥S a
1 : x3=0}) is called a binary fragmenta-

tion. In the case of a binary fragmentation, it is not hard to see that F
determines n, thus F characterizes the law of the fragmentation.

Define the fragmentation spectra to be, for vmin < v < vmax, the function
that associates the Hausdorff dimension (denoted by Dim(.) in the sequel)
of the sets Gv, Gav, and G

a v
to v ( for a definition and main properties of the

Hausdorff measure and dimension see, for instance, ref. 27).
The following theorem, which gives the fragmentation spectra expli-

citly in terms of the function vQ C(v) thus entails that the law of a binary
fragmentation is characterized by its spectra.

Theorem 1. For each v ¥ ]vmin, vmax[, almost surely

Dim(Gv)=C(v)/v=1+Uv−F(Uv)/v, (4)

Dim(Gav)=C(v)/v if v [ vtyp and =1 if v \ vtyp, (5)

Dim(G
a v
)=C(v)/v if v \ vtyp and =1 if v [ vtyp. (6)

One can easily verify that C(vtyp)/vtyp=1, C(vmin)/vmin=0, and that
C(v)/v is continuous and decreases as v get farther of vtyp.

However, we do not necessarily have C(v)/vQ 0 when vQ vmax.
More precisely as

lim
vQ vmax

C(v)/v=lim
p s p
¯

1+p−F(p)/FŒ(p) \ 1+p
¯
,

as soon as p
¯
> −1, for each v > vtyp one has that

Dim(G
a v
) \ 1+p

¯
> 0.

The natural question in this setting is ‘‘are there some points with a
superexponential fragmentation behavior?’’ or more precisely, can we
define a set of such points with a non-trivial dimension?
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Consider the set

H=3x ¥ ]0, 1[ : lim sup
tQ.

−
1
t

log |Ix(t)|=+.4 .

Then it can be shown in the case FŒ(p
¯
+)=. that

Dim(H)=1+p
¯
.

The upper bound is established as in the case of G
a v

(see Section 3) and
the lower bound can be obtained roughly through the same techniques
employed in Section 4.

The rest of this paper is organized as follows. The next section introduces
notations, notions, and definitions. Upper bounds are given in Section 3.
Section 4, which represents the most important part of this work, gives a
lower bound for the Hausdorff dimension of Gv using a Galton–Watson
tree that reflects the genealogical structure of the interval fragmentation.

2. PRELIMINARIES

We now recall some facts mostly lifted from refs. 25, 26, 28, and 29 on
homogeneous fragmentations and their asymptotic behavior.

A homogeneous interval fragmentation is a Markov process with
values in O which enjoys two key properties: fragmentation and homoge-
neity. The fragmentation property states that when a new fragment (a new
segment in the example) is born, it starts a new independent fragmentation
of its own. This can be seen as a version of the branching property. The
homogeneity property states that this new fragmentation has, up to a
scaling factor, the same law as the initial one.

Specifically, if P stands for the law of the interval fragmentation S(t)
started from ]0, 1[, then for s, t \ 0 conditionally on

S(t)=0
i ¥N

Ji(t)

(where Ji(t) is the interval decomposition of the open S(t), i.e., for each i,
Ji(t) is an open subinterval of S(t), the Ji’s are disjoints and 1i Ji(t)=
S(t)) S(t+s) has same law as S (1)(s) 2 S (2)(s) 2 · · · where for each i, S (i)(s)
is a subset of Ji(t) and has same distribution as the image of S(s) by the
homothetic map ]0, 1[Q Ji(t).

Similarly, a homogeneous ranked fragmentation is a Markov process
with values in S a

1 such that if P stands for the law of the ranked fragmen-
tation X started from (1, 0, 0,...), then for s, t \ 0 conditionally on X(t)=
(x1, x2,...), X(t+s) has same law as the variable obtained by reordering the
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elements of the random sequences X (1)(s), X (2)(s),..., where for each i,
X (i)(s) ¥S a has same distribution as X(s) under Pxi where Pr is the image
of P by the map

(x1, x2,...)Q (rx1, rx2,...).

The homogeneous fragmentations we shall consider in this work are
those for which there is no loss of mass, i.e., such that almost surely, for all
t > 0

C
i
Xi(t)=1.

This is why the configuration space is S a
1 and not, as usual, the more

general space S a. As we have said, the law of such a ranked fragmentation
is completely characterized by a so called splitting measure, n, which is a
measure on S a

1 that verifies the integral condition (1).
The interpretation of the function F given by (2) is the following.

Suppose that at the initial time, a random point u with uniform distribution
is tagged on ]0, 1[: as in the example |Iu(t)| is a size biased pick from
X(t)=(X1(t), X2(t),...)=L(S(t)), i.e.,

|Iu(t)|=
L XK(t)

where K is a random variable with values in N such that

P(K=k | X(t))=Xk(t), k=1,... .

Then the process

t(t)=−log(|Iu(t)|) (7)

is a subordinator (an increasing Lévy process) and we have

E(|Iu(t)|q)=E(e−qt(t))=e−tF(q), t \ 0,

where F is given by (2) (see ref. 25 for the proof and discussion). This has
direct consequences such as F : ]p

¯
,.[Q ] −.,.[ being the Laplace

exponent of a subordinator, it is a concave increasing analytic function.
Furthermore F(0+)=0 (this comes from the mass conservation). Remark
that

vtyp :=E(t(1)).
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Then by the L.L.N., if vtyp <. (which holds whenever p
¯
< 0), for Lebesgue

almost every point x ¥ ]0, 1[

lim
tQ.
−t−1 log(|Ix(t)|)=vtyp a.s.

which proves that |Gvtyp |, the Lebesgue measure of Gvtyp , is 1.
The starting point of this work is an estimate obtained by Bertoin in

ref. 26 concerning the number of abnormally ‘‘large’’ or ‘‘small’’ fragments
at time t. More precisely, consider a homogeneous ranked fragmentation
(Xt)t \ 0, then, for v ¥ ]vmin, vmax[ one has with probability one

lim
EQ 0

lim
tQ.
t−1 log(Card{i ¥N : e−(v+e) t [Xi(t) [ e−(v− e) t})=C(v), (8)

where C(v) is the function defined by (3).
We proceed in two steps to prove Theorem 1: we will first give upper

bounds and then a lower bound for Gv and use inclusions to conclude.

3. UPPER BOUND

We prove the upper bound for the dimension of G
a v

and Gav and the
conclusion follows for Gv by the inclusion

Gv … G
a v

5 Gav.

Let (S(t))t \ 0 be an interval fragmentation. We denote by

X(t)=(X1(t), X2(t),...)=L(S(t))

the associated ranked fragmentation. We also use the notation

S(t)=0
i ¥N

Ji(t)

where (J1(t), J2(t),...) is an interval decomposition of S(t) and the labelling
is size-wise, i.e., for each i, Xi(t)=|Ji(t)|.

3.1. Upper Bound for (6)

In this section we consider the case v > vtyp. Define the collection of
indices

Gv(t)={i ¥N : Xi(t) [ e−vt}
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and note that -N ¥N, for all w ¥ ]vtyp, v[ the set 1n \N 1i ¥ Gw(n) Ji(n) is a
cover of G

a v
(actually it is a cover for the larger set

3x ¥ ]0, 1[ : lim sup
tQ.

−
1
t

log |Ix(t)| > v4

and hence the upper-bound for the dimension of H is also proven here).
Thus we want to show that for a > C(v)/v as closed to C(v)/v as wished,
for w close enough to v

C
n

C
i ¥ Gw(n)

Xai (n) <.

Fix E > 0 and take a=C(v)/v+E.
Clearly, for any b ¥ [0, a[

C
i ¥ Gw(n)

Xai (n) [ e
−nw(a−b) C

i ¥N

Xbi (n).

Choose b=Uv+1. Thus, as

a=C(v)/v+E=b+E−F(Uv)/v

and as F(Uv)/v < 0 when v > vtyp we see that b < a.
Remark also that

(a−b) v=−F(b−1)+Ev.

Thus, if we choose w close enough to v

e−nw(a−b) C
i ¥N

Xbi (n)=e
−nEŒenF(b−1) C

i ¥N

Xbi (n),

where EŒ > 0. Bertoin has shown in ref. 26 (see Theorem 2 therein) that

enF(b−1) C
i ¥N

Xbi (n)

is a positive martingale. Hence, a.s.

e−nw(a−b) C
i ¥N

Xbi (n)=o(e−nEŒ)

which concludes the proof.
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3.2. Upper Bound for (5)

In this section we consider the case v < vtyp. The main difference
between the proofs for the upper bounds of (5) and (6) come from the fact
that when v > vtyp Uv < 0 and hence F(Uv) < 0 whereas the converse is true
when v < vtyp.

Denote by Gcv(t) :=N0Gv(t) the complementary in N of Gv(t). Note
that -N ¥N, for all w ¥ ]v, vtyp[ the set 1n \N 1i ¥ Gcw(n) Ji(n) is a cover
of Gav.

Recall from (7) the notation Iu(t) for the size-biased pick and tt=
−log |Iu(t)| for the associated subordinator. Clearly

E 5 C
i ¥ Gcw(t)

Xai (t)6=E[exp(−(a−1) tt), tt < wt]

[ eawtE[exp(−(a+a−1) tt)]

for all a > 0. As Uv > 0, when E=a−C(v)/v < F(Uv)/v one may choose
a=Uv+1−a=F(Uv)/v− E > 0. Hence the right hand term becomes

e−[F(Uv)−(Uv+1) w+aw] t=e−Evte (Uv+1−a)(w−v) t=e−EŒt

for a well chosen EŒ > 0 when w is close enough to v. Hence the series
;i ¥ Gcw(n)

Xai (n) is convergent and the upper bound for (5) is proven.

4. LOWER BOUND

To complete the proof of Theorem 1, we wish to construct a subset K
of Gv of Hausdorff dimension large enough. More precisely, we shall obtain
a lower bound for Dim(K) by using the Hölder index of an increasing
process indexed by t ¥ ]0, 1[ that only grows on points of K, and which
can thus be seen as a local time on this set.

We obtain K by mean of a branching process (G(n))n ¥N. More preci-
sely G(n) is the union of a collection H(n) of some of the fragments that
are present at time dn and that are included in G(n−1), so (G(n))n ¥N is
a nested sequence. We will then define K=4n ¥N G(n). We begin by a
careful construction of G. We first define a somewhat ‘‘natural’’ branching
process associated to the fragmentation and then show how to modify it to
use classical results from the theory of branching processes.

4.1. Construction of the Branching Process

Remark that there is a natural notion of genealogy for interval frag-
mentations. Namely, the ‘‘sons’’ at time t+s of a given fragment I of S(s)
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are just the fragments of S(t+s) that are included in I. Our strategy to find
points in Gv will be to look at S(t) at a set of times of the form {dn}n ¥N,
and at each step to select the sons of the preceding generation such that the
ratio of the sizes father/son lies in an interval above v if the father was too
large and under v in the opposite case.

More precisely, take an interval o … ]vmin, vmax[, then for all t > 0
define

qo(t)=Card{i: −log(|Ji(t)|)/t ¥ o, {0, 1} 5 J̄i(t)=ø}, (9)

i.e., the number of intervals with sizes in oŒ the image of o by the map
xQ eEx and which do not touch the boundary of ]0, 1[. The reason why we
impose this last condition is that we want to take the intersection of an
infinite nested sequence of collections of open intervals. If the closure of
each generation is in the interior of the preceding generation and is not
empty, then the intersection is not empty. Remark that by homogeneity,
for s > 0 and j ¥N, conditionally on |Jj(s)| > 0, qo(t) has the same law as

Card ˛ i:
Ji(t+s) ı Jj(s),

−t−1 log 1 |Ji(t+s)|
|Jj(s)|
2 ¥ o,

“Jj(s) 5 J̄i(t+s)=ø

ˇ
where “I is the boundary of I.

Take e, d > 0 and He, d(0) :={]0, 1[}. Define inductively on n the sets
He, d(n) as the collection of the the interval components of S(nd) which
fulfill the following three conditions. Firstly, every I ¥He, d(n) must be
included in some J ¥He, d(n−1). Then there is a relative-size condition: if
I ¥He, d(n) and J ¥He, d(n−1) are such that I … J then

• if |J| < e−v(n−1) d then −d−1 log(|I|/|J|) ¥ [v, v+e].
• if |J| \ e−v(n−1) d then −d−1 log(|I|/|J|) ¥ [v− e, v].

In both case we finally impose that Ī 5 “J=ø.
In some respects He, d is much like a multi-type branching process, with

each particle corresponding to a segment and thus having some length
attached. A ‘‘particle’’ I of the nth generation (i.e., a segment of the collec-
tion He, d(n)) will be called of

• type 1 if |I| < e−vnd and in that case its offspring has same distribu-
tion as q[v, e+v]

• and of type 2 if |I| \ e−vnd and in that case its offspring has same
distribution as q[v− e, v].
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The difference being that although here, as in the classical case, the
law of the total number of children of a particle I only depends on its type,
it happens that the repartition between type 1 and 2 of these children
depends on the precise size of I.

However, it can easily be seen by induction that for all n ¥N, for any
In ¥He, d(n)

evnd |In | ¥ [e−ed, e ed]. (10)

Thus a.s. for any nested sequence of non-empty intervals In ¥He, d(n)
(implicitly, we are conditioning on non-extinction)

lim
nQ.

− log(|In |)/nd=v.

If there exists {x}=4 In, if we denote by nt :=sup{n ¥N : nd < t},
then for all t one has the bounds

− log(|Int |)/((nt+1) d) [ − log(|Ix(t)|)/t [ − log(|I(nt+1) |)/(ntd).

Hence, one has that − log(|Ix(t)|)/tQ v almost surely and x ¥ Gv.
For all n we define

Ge, d(n) := 0
I ¥He, d(n)

I,

i.e., H.(.) is the collection of the open interval components of G.(.). Hence
4n Ge, d(n) ı Gv. Note that we could not use a monotype branching process
here, i.e., at each generation keep the sons such that

|I|/|J| ¥ [e−(v+e) d, e−(v− e) d]

because this would lead to points in Gav+e 5 G
a v− e

and not necessarily in Gv.
There are two issues we must take care of now:

• first, we must choose e and d such that we catch enough of Gv, and
this amounts to control the growth of the branching process

• and second, we would rather work with a true Galton–Watson tree.
The branching process He, d is the most natural to consider, but in order to
use classical results of the branching processes theory we need to cut some
branches in order to obtain a true, super-critical, Galton–Watson process.
Furthermore, we must do so while keeping its rate of growth close enough
to its original value.
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4.2. Rate of Growth

In the right-hand side of (8) the interval [v− e, v+e] is symmetric
around v, but it is easy to see that one hardly needs to change the argu-
ments used in ref. 26 to have that a.s.

C(v)=lim
eQ 0

lim
tQ.
t−1 log q[v− e, v](t) (11)

and

C(v)=lim
eQ 0

lim
tQ.
t−1 log q[v, v+e](t), (12)

where q[a, b](t) is defined by (9).
Hence, clearly if we fix EŒ > 0 and g > 0, then we may find e > 0 and t0

arbitrarily large such that

-t > t0: P(|t−1 log(q[v− e, v](t))−C(v)| > g) < EŒ (13)

and of course the same is true replacing [v− e, v] by [v, v+e].
For each t > 0 consider a variable q̃(t) which law is given by

P(q̃(t)=e(C(v)−g) t)=1− EŒ

and

P(q̃(t)=0)=EŒ

where

EŒ=P(|t−1 log(q[v− e, v](t))−C(v)| > g)KP(|t−1 log(q[v, v+e](t))−C(v)| > g).

Note that

|t−1 log(E[q̃(t)])−C(v)| [ g+t−1 |log(1− EŒ)|.

Fix E and choose EŒ and g such that g+|log(1− EŒ)| < E, then choose e and
t0 > 1 by (13).

Plainly q̃(t) is stochastically dominated by q[v− e, v](t) and q[v, v+e](t).
Hence, we can construct a true Galton–Watson tree by thinning He, d where
d > t0. More precisely there exists a procedure for deciding at each node to
erase or not some or all of the offspring and such that the resulting tree,
denoted by Hv, E is a Galton–Watson tree, with offspring distribution given
by the law of q̃(d).
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Thus, if we define m :=E(q̃(d)), the expectation of the number of
children of a particle, one has

1.

|d−1 log m−C(v)| < E (14)

and thus m > 1 and Hv, E is super-critical.

2. for each n ¥N the closure of Gv, E(n) :=1I ¥Hv, E(n)
I is in Gv, E(n−1)

3.

3
n ¥N

Gv, E(n) ı Gv.

This last point only makes sense if the tree doesn’t die, so in the
following we condition systematically on non-extinction.

We now show that Dim(Gv) \ C(v)/v for v ¥ ]vmin, vmax[ which entails
the result for Gav and G

a v
by inclusion.

4.3. Proof of the Lower Bound

Fix v ¥ ]vmin, vmax[ and E > 0. Choose e and d > t0 as shown above and
consider the tree Gv, E. Let us recall the signification of the parameters:
E controls the precision of the growth rate, e is the width of the window of
acceptable sizes and d is our time-step. Define

Zv, E(n)=Card{Hv, E(n)}

the size of the nth generation.
In the following to simplify the notations we drop the subscript

v, E and we note Z(n), G(n), or H(n) for Zv, E(n), Gv, E(n), or Hv, E(n),
respectively.

Recall we are conditioning on non-extinction of the branching process
H(.). This conditioning can be made at no cost because in the event that
H(.) becomes extinct, one can restart a new independent tree on any frag-
ment present at the extinction time for instance, and iterate this procedure
until one find an infinite tree. Otherwise said, 4n GE, d(n) is nonempty only
with positive probability, but it is however enough to show that its dimen-
sion is the correct one only with positive probability, for the dimension
must be a constant a.s. due to the independence of fragmentation on dif-
ferent subsets.
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It is well known that almost surely

m−nZ(n)QW> 0

(more preciselyW> 0 on the survival set of the tree).
Let s be a node of our tree (thus it is also a subinterval of ]0, 1[) and

let |s| designate its height in the tree, let Z (s)(n) be the number of its
offspring in the tree at the generation |s|+n, finally call W(s) the ‘‘renor-
malized weight’’ of the tree rooted at s, i.e.,

W(s) := lim
nQ.
m−n Card{sŒ ¥H(|s|+n), sŒ … s}.

Fix an interval I … ]0, 1[ and introduce

HI(n)={s ¥H(n), s 5 I ]”}

ZI(n)=Card(HI(n)).

Define

xQ Lx :=lim
n
m−nZ]0, x[(n), x ¥ ]0, 1[.

Lemma 2. For each E > 0,

1. there exists a version L̃ of L which is Hölder continuous of order a
for any a < (C(v)− E)/v

2. L only grows on the set 4n Gv, E(n).

Proof. We show the first point by verifying Kolmogoroff ’s criterium
(see ref. 30, Theorem 2.1, p. 26).

Clearly one has that for all x < y ¥ ]0, 1[

|Lx−Ly |=lim
n
m−nZ]x, y[(n).

For any J open subinterval of ]0, 1[, define

g(J) :=sup{n ¥N : e−vdn \ |J|}=[− log(|J|)/vd].

This is very close to the largest n for which J can be included in an interval
of the collection H(n), thus it is not difficult to see that at time g(J) the
number of intervals of H(g(J)) which have a non empty intersection with
J is bounded. More precisely, according to (10), for each n the size of
the intervals in H(n) have a lower bound given by e−vnd− ed, so |J| e−(v+e) d
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is a lower bound for the size of the intervals of H(g(J)), and thus
ZJ(g(J)) [ e (v+e) d.

Thus, for all x, y such that x < y, one has by definition of Lx and
using (14) that

|Ly−Lx | [ m−g(]x, y[) C
s ¥H]x, y[(g(]x, y[))

W(s)

[ e log m(
1
vd
log(y−x)+1) C

s ¥H]x, y[(g(]x, y[))
W(s)

[ m |y−x| (C(v)− E)/v C
s ¥H]x, y[(g(]x, y[))

W(s).

Remark that for all c > 1 and all J … ]0, 1[ one has

E 51 C
s ¥HJ(g(J))

W(s)2
c6 < E[(W1+W2+·· ·+W[e(v+e) d]+1)c] <.

where the Wi are independent copies of W and the finiteness comes from
the existence of finite moments of all order for W (this follows from, e.g.,
Biggins and Bingham (31)).

We conclude that for each c > 1 there exists a k > 0 such that

E(|Ly−Lx |c) [ k |y−x|c(C(v)− E)/v

which proves our first assertion.
The second part of the lemma is straightforward. The increasing func-

tion Lx only grows on the points of ]0, 1[ that correspond to the frontier
of the tree, i.e., on 4n G(n). More precisely, for any interval ]a, b[ …
(4n G(n))c one clearly has that La=Lb by definition. On the other hand
L0+=0 and L1−=W> 0 so Lx can be thought of as a local time on
4n G(n). L

We conclude with the proof of Theorem 1. For a cover of 4n G(n) of
the type 1N

i=1 ]li, ri[ (where the ]li, ri[ are disjoints open intervals) one
has a.s.

C
N

i=1
|L̃ri −L̃ li |=W.

Thus for all such cover with maxi(ri−li) small enough

W [ k C
N

i=1
(ri−li) (C(v)− E)/v
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and hence a.s.

Dim(Gv) \ Dim 13
n
(G(n))2 \ (C(v)− E)/v.

To conclude simply let EQ 0.
Alternatively one could use the same approach as Orey and Taylor in

ref. 11. They apply a lemma for the lower bound which is specific to self-
similar sets, but as the arguments are very similar to those above we do not
include this version of the proof. There is also a way of doing the proof by
using some fine results of Liu (20) on the local behavior of the branching
measure that does not rely on the Kolmogorov criterium.

We conclude with the three following remarks.

Remark 1. Although formally p
¯
\ −1, in the cases analogue to the

introductory example (i.e., when the fragmentation is slow enough and
F can be analytically extended beyond −1) then it can be shown that
the theorem holds for some v larger than FŒ(p

¯
+), more precisely for

v ¥ ]vmin, FŒ(pg)[ where F is extended and

pg=inf{p: 1+pg−F(pg)/FŒ(pg) > 0}.

When it is finite, FŒ(pg) is the maximum fragmentation speed.

Remark 2. In Theorem 1, relations (5) and (6) hold almost surely
simultaneously for all v. Indeed, call W0 a set of probability 1 on which (4),
(5), and (6) are true for each v rational. Define the set of events

A :={,v ¥ ]vmin, vmax[ s.t. (5) or (6) is not true}.

As for each v [ w one has Gav … Gaw and G
a w

… G
a v

, it is clear that A … Wc0 the
complementary of W0, and hence P(A)=0. The same arguments show that
almost surely for all v ¥ ]vmin, vtyp[ one has

Dim(Gv) [ C(v)/v,

and almost surely for all v ¥ ]vtyp, vmax[ one has

Dim(Gv) \ C(v)/v.

Although it seems doubtful that there exists an exceptional set of v’s for
which (4) does not holds, the techniques employed in the present work does
not allow one to conclude on that matter.
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Remark 3. Define

Hav :=3x ¥ ]0, 1[ : lim inf
tQ.

−t−1 log(|Ix(t)|) [ v4 ,

H
a v
:=3x ¥ ]0, 1[ : lim sup

tQ.
−t−1 log(|Ix(t)|) \ v4 .

Clearly Gav …Hav and G
a v

…H
a v
, thus

Dim(Hav) \ Dim(Gav)

and

Dim(H
a v
) \ Dim(G

a v
).

Furthermore, it is easy to see by inspection of the proof in Section 3 that
the the same upper bound holds for Hav (resp. H

a v
) and Gav (resp. G

a v
). Thus

Dim(Hav)=Dim(Gav)

and

Dim(H
a v
)=Dim(G

a v
).
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